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In this paper, the deep drawing process of an automobile panel in order to select the appro-
priate amount of parameters has been investigated. The parameters include friction between
the blank and die, blank width and length, blank thickness and gap between the blank and
blank-holder. A multi-layer artificial neural network (ANN) trained by finite element ana-
lyses (FEA) is applied in order to improve forming parameters and achieve a better quality.
As the FEA results are used to train the ANN, the FEA results have been verified by three
experiments. Finally, an appropriate amount of each parameter is predicted by the trained
ANN and a FEA has been done based on the ANN prediction to evaluate the accuracy
of the trained ANN. Moreover, it is shown that the ANN could predict results within a
10 percent error. In addition, the proposed method for prediction of the appropriate para-
meters (ANN) is confirmed by comparing with the Taguchi design of experiment prediction.
It is also shown that the model obtained by the former method has lower errors than the
latter one. In this study, the Taguchi model is used to evaluate the effect of parameters on
tearing and wrinkling. Based on the Taguchi design of experiment, while the blank length is
the most effective parameter on tearing, the maximum height of wrinkles on flanged parts
mainly depends on the blank thickness.

Keywords: deep drawing, finite element analysis (FEA), multi-layer artificial neural network
(ANN), Taguchi design

1. Introduction

Sheet metal forming is one of the most widely used industrial processes, which is fast and cost-
-effective. Deep drawing, which is widespread among other sheet metal forming processes, is
used for a wide variety of industrial purposes. In the deep drawing process (Fig. 1), the blank is
positioned on a die. Then, the blank-holder places the blank at a certain position and the punch
forms the blank with a downward movement. There are lots of parameters that affect the deep
drawing process and quality of the final product such as geometry of the forming tool, punch
and blank-holder force, friction, blank dimensions, and material properties (Singh and Agnihotri,
2015; Fereshteh-Saniee and Montazeran, 2003). These parameters affect the appearance of the
final product. Adjustment of each mentioned parameter might prevent forming defects such as
tearing, wrinkling, thinning, earing, and springback. Therefore, selection and optimization of
the process parameters is an effective way to form the blank with better appearance, in a cost
effective way and without any defects.
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Fig. 1. Schematic of the deep drawing process

Colgan and Monaghan (2003) tried to find effective parameters based on a statistical method
using orthogonal arrays. They conducted an experiment on four hundred steel parts with 1mm
thickness. The results showed that the punch radius and matrix radius were the main effective
parameters in final thickness. They reported that smaller punch edge radius needed more force
and it was shown that the lubricant type affected the punch force significantly. In addition, in a
recent research by Laurent et al. (2015) warm deep drawing of AA5754-O alloy was investigated.
They manufactured a warm die for their experiment and studied the influence of temperature
on springback. They conducted their experiments between room temperature and 200◦C. In
their research, Abaqus/Explicit was used to simulate the procedure in which an anisotropic
temperature-dependent model was utilized. Furthermore, they verified the simulation results
using an experiment.

Sezek et al. (2010) studied the effect of deep drawing factors such as die radius, friction
and blank thickness both numerically and experimentally. The results showed that the friction
coefficient and the blank-holder angle were main factors. They also concluded that the drawing
ratio was reduced by increasing the die angle and the results of experiment were close to the
simulation. Demirci et al. (2008) investigated deep drawing parameters for Al1050 alloy by both
FEA and experiment. They focused on the blank-holder force and thickness distribution in the
drawn part.

Chamekh et al. (2009) used trained ANN to investigate the anisotropy behavior based on
FEA results. A back propagation ANN was implemented in their study and the results of
FE were in good agreement with the results of ANN. They declared that the combination
of ANN and FE could be used to optimize the deep drawing process. Moreover, Forouzan and
Akbarzadeh (2007) utilized a back propagation ANN to predict some material properties such as
yield stress, elongation, ultimate stress and average of anisotropy for rolled AA3004 aluminum
alloy. The maximum percentage of error was estimated about 6.35 by trained ANN. Finally,
they inferred that mechanical properties and anisotropy of the material were predictable by
using their method.

El Sherbiny et al. (2014) investigated changes in thickness and residual stress in the deep
drawing process. Their paper analyzed the process by using FEA. The results of simulation
were verified by experimental results. In their article, geometrical parameters were radius of
the matrix edge, radius of the punch edge and the friction coefficient. They investigated the
effect of the mentioned parameters on the drawn blank in 8 sections. The maximum amount
of residual stress was also measured. Furthermore, Padmanabhan et al. (2007) investigated the
effect of three parameters including matrix radius, blank-holder force and friction coefficient in
deep drawing of symmetric parts. They combined the FE method with the Taguchi method.
The results showed that the most effective parameter in thickness distribution was the matrix
edge radius which was followed by the blank-holder force and the friction coefficient.
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Yagami et al. (2007) investigated the effect of blank-holder motion on formability factors
such as wrinkling and drawing of a copper blank during the deep drawing process. They de-
signed an algorithm that controlled the process and compared the results with finite element
simulation. The results illustrated that the wrinkles which were lower than 200 µm could be
omitted. Furthermore, the FE results reported improvement of the formability and reduction of
the ductile damage behavior. Additionally, Zein et al. (2014) analyzed a typical deep drawing
die and focused on improving finial dimensions using plastic return. First, they verified the FEA
with experiments. Then, they changed a single parameter while other parameters were kept con-
stant, and repeated the finite element simulation trying to optimize the main parameters such
as matrix edge radius, punch radius, blank thickness and clearance. Finally, optimum amounts
were suggested for main parameters.

Candra et al. (2015) investigated the variable blank-holder force during punch motion in order
to prevent tearing. In their research, they used FEA with a slab method. Although their results
contained slight errors, they inferred that the presented method assisted to prevent the sheet
from tearing during the deep drawing process. Fereshteh-Saniee and Montazeran (2003) studied
the drawing force using analytical, numerical, and experimental methods. They investigated the
effect of element type on the drawing force and strain alteration and studied the effect of friction
coefficient on the force-displacement diagram using the Finite Element Method. It was also
inferred that the Sieble equation could estimate the results more accurate than other analytical
methods and proved that the Sieble equation was more sensitive to the friction coefficient than
FEA. Finally, by comparing FE results with experimental results, it was determined that shell
elements estimated more accurate results than four-node elements.

Singh et al. (2011) conducted a research on optimum amounts for the matrix and punch
radius, friction coefficient and drawing ratio for St14 blank with 1mm thickness. They obtained
optimum amounts using 28 experiments, neural network and genetic algorithm coupling. In
an comprehensive study, Wifi and Abdelmaguid (2012) worked on a review article introducing
optimization methods for both single and progressive dies.

In this paper, by using artificial neural network trained by FEA results, an appropriate
amount of each parameter is selected in three steps. First, FEA is done and verified by three
experiments. Second, the ANN is trained based on the design of experiment data. Third, the
appropriate amount of each parameter is found using the trained ANN. These three steps are
shown in Fig. 2. The main parameters which are selected to be investigated are the friction
between matrix, blank-holder and blank, friction between punch and blank, blank width and
length, blank thickness and the gap between blank and blank-holder. In addition, outputs which
are defined as impact indicators are tearing and wrinkling.

2. Simulation of the deep drawing process

2.1. Finite Element modeling

As it can be seen in Fig. 3, four parts are modeled in the Finite Element software. These
parts include the blank, punch, matrix, and blank-holder. Due to symmetry of the matrix, half
of it has been modeled in Abaqus/Explicit. The punch, matrix, and blank-holder are assumed
to be discrete rigid parts and their displacements are controlled by reference points. The mesh
used in this simulation is R3D3 which means 3 points and 3 dimensional solid elements.

The blank is the only deformable part which is meshed by S4R shell elements. S4R means
four points with reduced integration. These meshes are suitable for simulation of sheet behavior
with respect to thickness variation (Abaqus v. 6.11).
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Fig. 2. Proposed steps in the investigation

Fig. 3. Defined parts used in FE simulation

2.2. Material properties

A deformable St14 blank is analysed in this article. The chemical composition of this mate-
rial is shown in Table 1. Its stress-strain curve is evaluated with INSTRON 4486 simple tensile
test machine under ASTM E8 standard and 0.8mm sheet thickness (Fig. 4a). Mechanical pro-
perties are demonstrated in Table 2. It should also be noted that values of anisotropy have been
calculated with the Hill criterion which is shown in formula as

R22 =

√

r90(r0 + 1)

r0(r90 + 1)
R33 =

√

r90(r0 + 1)

r90 + r0
R12 =

√

3r90(r0 + 1)

(2r45 + 1)(r0 + r90)
(2.1)

The values of R11, R13 and R23 are equal to 1.

Table 1. Chemical composition of St14 [wt%]

C Mn S P Al

0.037 0.222 0.03 0.05 0.061

Furthermore, to evaluate tearing, the FLD criterion is used. The FLD diagrams are found
from the library of Autoform software (Fig. 4b). It has been assumed that thickness differentials
have not affected the FLD (Hashemi et al., 2012).
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Table 2. Mechanical properties of St14

Parameters Value

Density, ρ 7800 kg/m3

Young’s modulus, E 210GPa

Poisson’s coefficient, ν 0.3

Yield Stress, σ 169.54MPa

Ultimate Stress, UTS 520MPa

r0 1.87

r45 1.3

r90 2.14

Fig. 4. (a) Stress-strain graph for St14, (b) FLD graph for St14

2.3. Validation of FEA results

Validation of FEA results is done in three steps. These steps are mesh independence and
include investigation of energy graphs and comparison between FEA and experiments. Regarding
the mesh independence, as can be seen in Table 3, several analyses with different mesh sizes
are done. Meshes are sized from 3mm to 14mm and the results showed that 8, 10 and 12mm
meshes lead to similar results. Therefore, for precise estimation and optimization of the analysis
time, a 10mm mesh has been used. In the second part of the validation, in which energy graphs
were scrutinized, kinetic energy and artificial energy graphs were compared with internal energy.
Finally, in the third part of the validation, FEA results were compared with three specimens
drawn in different circumstances.

Table 3. Independence of the mesh size

Mesh size Number of Number of Time STH
FLD

[mm] element node resolution [s] [mm]

3 97200 97844 26640 0.416 1.250

4.5 43254 43684 11435 0.652 0.919

5.5 28994 29346 6756 0.606 0.906

6 24400 24723 4192 0.679 0.815

8 13650 13892 2216 0.687 0.805

10 8760 8954 1354 0.701 0.793

12 6100 6262 856 0.727 0.707
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Regarding the third part of validation, Fig. 5 shows the drawing result for the first specimen
in which wrinkles occurs on the flanging part and wall of the specimen both in the experiment
and FEA. The input parameters for this experiment are 0.3mm gap between the blank-holder
and blank, 0.8mm blank thickness, 1200 × 1460mm blank size. Lubricant films between the
punch and blank and a piece of plastic between the matrix, blank-holder and blank are taken
into account used. It should be noted that the friction coefficient is selected based on the previous
studies (Colgan and Monaghan, 2003; Watiti and Labeas, 2010; Gao et al., 2010). In the second
experiment, shown in Fig. 6, all parameters except the gap between blank-holder and blank
remained constant. As the gap was closed for drawing the second specimen, tearing occurred
in FEA and the experiment. In FEA, the elements with the FLD criterion higher than 1 were
eliminated to show tearing. Finally, in the third experiment, increasing the gap up to 0.05mm
resulted in thorough drawing without tearing and severe wrinkling. As shown in Fig. 7 and
Table 4, thickness and wrinkling in the third drawing specimen are evaluated by FEA and
experimentally.

Fig. 5. Comparison between finite element analysis and experiment for the first sample

Fig. 6. Comparison between finite element analysis and experiment for the second sample

Table 4. Comparison of wrinkling length between experiment and FEA for the third sample

Wrinkling location Experiment FEA Error
based on Fig. 3 [mm] [mm] [%]

Wrinkling length (left) 1.75 1.90 8.21

Wrinkling length (right) 1.55 1.67 7.45
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Fig. 7. Comparison of thickness between finite element analysis and experiment for the third sample

Given the validation procedure, it can be concluded that FEA results are precise. Therefore,
these results could be used to train an ANN.

3. Modeling

3.1. Design of the experiment

After determination of six influential parameters in the final step of panel production, each
parameter is defined in three levels based on a multiple experiment and FEA. As it can be seen
in Table 5, these parameters include friction between the blank and die surface, blank width,
blank length, blank thickness and blank-holder gap.

Provided that the design of experiment was based on the full factorial design, 729 experiments
should be done which was time consuming. Therefore, the method of training an ANN has been
used to determine an appropriate amount of each parameter. The Taguchi method was utilized
to evaluate the effect of each parameter on tearing and wrinkling. Based on the number of
parameters and their levels in the Minitab software, it was determined that the L27 model
should be used for the Taguchi design of the experiment.

Table 5. Input parameters and selected levels

Parameters Factor number Level 1 Level 2 Level 3

Friction matrix/blank-holder and blank Factor 1 0.04 0.07 0.1

Friction punch and blank Factor 2 0.04 0.07 0.15

Blank width Factor 3 1150 1200 1250

Blank length Factor 4 1360 1460 1560

Blank thickness Factor 5 0.7 0.8 0.9

Blank-holder gap Factor 6 0.02 0.05 0.07

3.2. Training an artificial neural network

ANN is an effective method for solving problems in which relationships between parameters
are complex or defining them in one formula is difficult. In the deep drawing process, numerous
parameters exist and an analytical formula could not explain them. In the present research,
a network with 2 hidden layers is utilized. The first hidden layer has 10 neurons with the
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sigmoid transfer function, and in the second hidden layer a linear transfer function is used. The
neural network is a feed-forward network which uses the back propagation error algorithm and
the Levenberg-Marquardt training algorithm and in order to train it 109 data are used. The
network is selected based on testing a wide variety of networks with different numbers of layers
and available training algorithms.

As it is obvious in Fig. 8, there are six input parameters in the first layer and two outputs
including the value of the FLD criterion and maximum wrinkling height. Figure 9 illustrates the
training process with the best performance in the first epoch and the training process terminated
after six epochs. It can be seen that the precision of the network with respect to validation data
has been decreased after the first epoch. Figure 10 shows the regression graph of the trained
network. In this graph, values of R near 1 reveal network precision and, more importantly, the
similar R values for training data, test data and validation data indicate that this network does
not memorize the training data.

Fig. 8. Schematic of the applied artificial neural network

Fig. 9. Training process of artificial neural network
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Fig. 10. Regression graph of trained artificial neural network

4. Selection of appropriate amounts for input parameters

In this article, two methods are used for the selection of appropriate amount of the input
parameters in order to reach the best output amounts. The first method is to predict using a
trained ANN and the second one is the Taguchi DOE. It is attempted to reduce the maximum
height of wrinkling and keep the FLD criterion below 1 to prevent tearing.

5. Results and discussion

As for the Taguchi DOE, graphs which are called signal to noise ratio are obtained. Each of
these graphs demonstrates the influence of input parameters on the outputs. In fact, the more
differentials in a line, the greater effect of that parameter. In Figs. 11a and 11b, the influence
of inputs on the FLD criterion and the maximum wrinkling height are shown, respectively. In
Fig. 11a, it can be seen that the blank length is the most effective parameter and friction between
the matrix, blank-holder and blank is the least influential parameter among the FLD criterion
parameters. Moreover, in Fig. 11b, it is obvious that the blank thickness is the most important,
and the blank length is the least important parameter affecting the maximum wrinkling height
created on the flanging part of the product.

Regarding prediction of appropriate input parameters by the Taguchi DOE as shown in
Table 6, a test with 121331 code is suggested. This code shows the level of each parameter.
For example, the aforementioned code shows that friction between the matrix, blank-holder and
blank is in the first level which is 0.04mm, friction between the punch and blank is in the
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Fig. 11. Influence of input parameters on (a) FLDCRT and (b) maximum wrinkling length

second level which is 0.07mm, the blank width is in the first level which is 1150mm. Similarly,
the blank height is 1560mm, blank thickness is 0.09mm and the gap between the blank and
blank-holder is 0.02mm. The results which are shown in Table 6, show that there is a great
discrepancy between the Taguchi prediction and FEA, especially for the maximum wrinkling
height. Therefore, it could be concluded that the Taguchi DOE would not be a successful method
for prediction of input parameters.

Table 6. Comparison between the Taguchi prediction and the finite element for test num-
ber 121331

Outputs Taguchi Finite element Percentage of error

FLD Criterion 0.597 0.657 9.13

Wrinkling height 7.12 2.24 217.85

On the other hand, the trained ANN predicts the experiment with 231333 code as an appro-
priate combination of inputs (Table 7). This code shows that friction between the matrix/blank-
holder and blank is 0.07mm, friction between the punch and blank is 0.15, blank width is
1150mm, blank height is 1560, blank thickness is 0.9 and the gap between the blank and blank-
holder is 0.07mm. By comparing these results with the prediction of Taguchi, the trained ANN
has predicted the outputs with a less error. This error for the FLD criterion or the maximum
wrinkling height is less than 10%.

Table 7. Comparison between the artificial neural network prediction and finite element for test
number 231333

Outputs ANN Finite element Percentage of error

FLD Criterion 0.536 0.572 6.29

Wrinkling height 1.198 1.32 9.84

6. Conclusion

In this paper, a combination of an experiment, finite element analysis and artificial neural
network is used. In fact, based on a finite number of FEA results, which are validated by experi-
ment, an ANN with 2 hidden layers is trained and utilized to predict specified outputs (maximum
wrinkling height and tearing) quickly and accurately. First of all, it could be concluded that a
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trained neural network is able to predict outputs with an error of 0.1 (Mean Square Error).
The prediction by the trained ANN could be done by less than 10% and some acceptable error.
For this panel, the maximum wrinkling height predicted by the Taguchi DOE shows a great
numerical difference with FEA results. Moreover, the results show that by increasing the tra-
ining data up to 15% of full factorial DOE, the accuracy of the trained ANN prediction could
improve. Also, using the parameters predicted by the trained ANN leads to smaller wrinkling
which could be a sign of better quality. Finally, it is inferred that the blank length is the most
effective parameter and friction between the matrix, blank-holder and blank is the least impor-
tant parameter affecting tearing. That the blank thickness is the most effective parameter in the
maximum wrinkling height and the blank length is the least effective one.
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